
rituals Documentation
Release 0.3.1

Jürgen Hermann

2019-01-24

Contents

1 Overview 3

2 Important Links 5

3 Documentation Contents 7
3.1 User’s Manual . 7

3.1.1 Introduction . 7
3.1.2 Adding Rituals to Your Project . 8
3.1.3 Task Namespaces . 8

3.1.3.1 The Root Namespace . 8
3.1.3.2 Adding Local Task Definitions . 9
3.1.3.3 Constructing Your Own Namespace . 9

3.1.4 How-Tos . 9
3.1.4.1 Change default project layout . 9
3.1.4.2 Change default project configuration . 10

3.2 Tasks Reference . 10
3.2.1 Fundamental Tasks . 10

3.2.1.1 Getting Help . 10
3.2.1.2 Project Cleanup . 10
3.2.1.3 Building the Project . 11
3.2.1.4 Freezing Requirements . 11

3.2.2 Executing Tests . 11
3.2.3 Documentation Tasks . 11

3.2.3.1 Building Sphinx Documentation . 11
3.2.3.2 Publishing Documentation . 11

3.2.4 Release Workflow . 12
3.2.4.1 Managing Development Versions . 12
3.2.4.2 Preparing a Release . 12
3.2.4.3 Building a PEX Distribution . 12

3.2.5 Continuous Integration . 13
3.2.5.1 Jenkins . 13

3.3 Configuration Reference . 13
3.3.1 General Options . 13
3.3.2 Options for ‘test’ . 14
3.3.3 Options for ‘docs’ . 14
3.3.4 Options for ‘release’ . 14
3.3.5 Options for ‘devpi’ . 15

i

3.4 Complete API Reference . 15
3.4.1 rituals package . 15

3.4.1.1 Subpackages . 16
3.4.1.2 Submodules . 22
3.4.1.3 rituals.config module . 22
3.4.1.4 rituals.easy module . 22

3.5 Contribution Guidelines . 26
3.5.1 Overview . 26

3.5.1.1 Reporting issues . 26
3.5.1.2 Improving documentation . 26
3.5.1.3 Code contributions . 26

3.5.2 Details on contributing code . 26
3.5.2.1 Set up a working development environment . 26
3.5.2.2 Add your changes to a feature branch . 27
3.5.2.3 Make sure your changes work . 27

3.6 Software License . 27
3.6.1 Full License Text . 27

4 References 35
4.1 Tools . 35

5 Indices and Tables 37

Python Module Index 39

ii

rituals Documentation, Release 0.3.1

Contents 1

https://pypi.python.org/pypi/rituals/
https://travis-ci.org/jhermann/rituals
https://coveralls.io/r/jhermann/rituals
https://github.com/jhermann/rituals/issues

rituals Documentation, Release 0.3.1

2 Contents

CHAPTER 1

Overview

“Rituals” is a task library for Invoke that keeps the most common tasks you always need out of your project, and
makes them centrally maintained. This leaves your tasks.py small and to the point, with only things specific to the
project at hand.

For more information, continue with the User’s Manual.

3

http://www.pyinvoke.org/

rituals Documentation, Release 0.3.1

4 Chapter 1. Overview

CHAPTER 2

Important Links

• GitHub Project

• Issue Tracker

• PyPI

• Latest Documentation

• Google Group

5

https://github.com/jhermann/rituals
https://github.com/jhermann/rituals/issues
https://pypi.python.org/pypi/rituals
https://rituals.readthedocs.org/en/latest/
https://groups.google.com/forum/#!forum/rituals-dev

rituals Documentation, Release 0.3.1

6 Chapter 2. Important Links

CHAPTER 3

Documentation Contents

3.1 User’s Manual

3.1.1 Introduction

“Rituals” is a task library for Invoke that keeps the most common tasks you always need out of your project, and
makes them centrally maintained. This leaves your tasks.py small and to the point, with only things specific to the
project at hand.

The following lists the common task implementations that the rituals.easy module offers. See below on how to
integrate them into your tasks.py.

• help – Default task, when invoked with no task names.

• clean – Perform house-cleaning.

• build – Build the project.

• docs – Build the documentation.

• test – Perform standard unittests.

• check – Perform source code checks.

• release.bump – Bump a development version.

• release.dist – Distribute the project.

• release.prep – Prepare for a release.

• . . . and many more, see inv -l for a complete list.

The guiding principle for these tasks is to strictly separate low-level tasks for building and installing (via setup.py)
from high-level convenience tasks a developer uses (via invoke). Invoke tasks can use Setuptools ones as building
blocks, but never the other way ‘round – this avoids any bootstrapping headaches during package installations.

Use inv -h ‹task› as usual to get details on the options of these tasks. The Tasks Reference explains them in
more detail. Look at the modules in rituals.acts if you want to know every nuance of what these tasks do.

7

http://www.pyinvoke.org/
https://github.com/jhermann/rituals/blob/master/src/rituals/acts

rituals Documentation, Release 0.3.1

Note:

The easiest way to get a working project using rituals is the py-generic-project cookiecutter archetype, which is
tightly integrated with the tasks defined here.

That way you have a working project skeleton within minutes that is fully equipped, with all aspects of building,
testing, quality checks, continuous integration, documentation, and releasing covered.

3.1.2 Adding Rituals to Your Project

First of all, include rituals as a dependency in your dev-requirements.txt or a similar file, to get a release
from PyPI. To refer to the current GitHub master branch instead, use a pip requirement like this:

-e git+https://github.com/jhermann/rituals.git#egg=rituals

Then at the start of your tasks.py, use the following statement to define all tasks that are considered standard:

from rituals.easy import *

This works by defining the namespace identifier containing Ritual’s default tasks. Note that it also defines Invoke’s
Collection and task identifiers, and some other common helpers assembled in rituals.easy . Rituals’ own
tasks.py can serve as an example.

Of course, you may also do more selective imports, or build your own Invoke namespaces with the specific tasks you
need.

Warning: These tasks expect an importable setup.py that defines a project dict with the setup parameters,
see rudiments and py-generic-project for examples. The needed changes are minimal:

project = dict(# this would usually be a setup(...) call
name='...',
...

)
if __name__ == '__main__':

setup(**project)

3.1.3 Task Namespaces

3.1.3.1 The Root Namespace

The tasks useful for any (Python) project are organized in a root namespace. When you use the from rituals.
easy import * statement, that also imports this root namespace. By convention of Invoke, when the identifier
namespace is defined, that one is taken instead of constructing one automatically from all defined tasks.

It contains some fundamentals like clean, and nested namespaces handling specific topics. Examples of nested
namespaces are test, check, docs, and release. See Tasks Reference for a complete list.

8 Chapter 3. Documentation Contents

https://github.com/Springerle/py-generic-project
https://github.com/jhermann/rituals/blob/master/tasks.py#L3
https://github.com/jhermann/rituals/blob/master/tasks.py#L3
https://github.com/jhermann/rudiments
https://github.com/Springerle/py-generic-project

rituals Documentation, Release 0.3.1

The root namespace has help as the default task, and most nested namespaces also have a default with the most
commonly performed action. These default tasks are automatically aliased to the name of the namespace, so for
example docs.sphinx can also be called as docs.

3.1.3.2 Adding Local Task Definitions

Having an explicit root namespace means that within tasks.py, you need to register your own tasks using its
add_task method, if you want them to be available as top-level names:

@task
def my_own_task(ctx):

"""Something project-specific."""
...

namespace.add_task(my_own_task)

Rituals’ own tasks.py uses this to add some local tasks.

Another strategy is to add them in bulk, so when you write a new task you cannot forget to make it visible:

Register local tasks in root namespace
from invoke import Task
for _task in globals().values():

if isinstance(_task, Task) and _task.body.__module__ == __name__:
namespace.add_task(_task)

Add the above snippet to the end of your tasks.py, and every local task definition gets added to the root namespace.

3.1.3.3 Constructing Your Own Namespace

When you want to have more control, you can exclude the namespace identifier from the import and instead define
your own. This example taken from the tasks.py of py-generic-project shows how it’s done:

from rituals.easy import task, Collection
from rituals.acts.documentation import namespace as _docs

...

namespace = Collection.from_module(sys.modules[__name__], name='')
namespace.add_collection(_docs)

Note that the name='' makes this a root namespace. If you need to be even more selective, import individual tasks
from modules in rituals.acts and add them to your namespaces.

3.1.4 How-Tos

3.1.4.1 Change default project layout

By default, sources are expected in src/‹packagename› and tests in src/tests.

You can change this by calling one of the following functions, directly after the import from rituals.
invoke_tasks.

• config.set_maven_layout() – Changes locations to src/main/python/‹packagename› and
src/test/python.

3.1. User’s Manual 9

https://github.com/jhermann/rituals/blob/master/tasks.py#L3
https://github.com/Springerle/py-generic-project/blob/master/tasks.py

rituals Documentation, Release 0.3.1

• config.set_flat_layout() – Changes locations to ‹packagename› and tests.

3.1.4.2 Change default project configuration

If you want to override the configuration defaults of various tasks, without using environment variables, add an
invoke.yaml file in the same directory where your tasks.py is located – usually the project root directory.

This example makes Sphinx (as called by the default docs task) place generated files in the top-level build directory
instead of a sub-directory in docs.

Listing 1: invoke.yaml

rituals:
docs:

build: ../build/_html

See Configuration Reference for a list of possible options.

3.2 Tasks Reference

Please make sure you also read the section on Task Namespaces.

3.2.1 Fundamental Tasks

3.2.1.1 Getting Help

help is the default task in the root namespace, so that just calling inv gives a reasonable response. It combines the
global help (inv -h) and the task listing (inv -l).

3.2.1.2 Project Cleanup

The clean task gets rid of various groups of generated files, selectable by options. These options are:

-a, --all The same as --backups --bytecode --dist --docs
-b, --backups Also clean '*~' files etc.
-d, --docs Also clean the documentation build area
-e, --extra Any extra patterns, space-separated and possibly quoted
-i, --dist Also clean the 'dist' dir
-t, --tox Include '.tox' directory
-v, --venv Include an existing virtualenv (in '.' or in '.venv')
-y, --bytecode Also clean '.pyc', '.pyo', and package metadata

Note that --all is selective and only cleans out ‘cheap’ files; it especially excludes a local virtualenv that carries
state (installed packages) you might not have recorded safely in requirements files yet, and the tree generated by tox
that can take a while to reproduce.

The --extra options allows you to add any custom glob patterns to clean out.

10 Chapter 3. Documentation Contents

rituals Documentation, Release 0.3.1

3.2.1.3 Building the Project

Invoking build just delegates to setup.py right now. In the future, automatic detection of other project compo-
nents like a Maven POM or Javascript build files might trigger additional build tools.

You can also include the docs task by adding the --docs option.

3.2.1.4 Freezing Requirements

Calling freeze writes the frozen requirements as found in the current environment into the file
frozen-requirements.txt, by calling pip freeze.

3.2.2 Executing Tests

The test.pytest and test.tox tasks call the related testing tools with appropriate parameters. Coverage con-
figuration is added to the py.test call, and if you pass the --coverage option, the generated report is loaded into
your web browser. In case the py.test command isn’t available, calling the test runner is delegated to setup.py.

For test.tox, PATH is extended according to the directories in the rituals.snakepits configuration value,
which defaults to /opt/pyenv/bin:/opt/pyrun/bin. That way, you can provide the Python interpreter ver-
sions to run multi-environment tests locally.

3.2.3 Documentation Tasks

3.2.3.1 Building Sphinx Documentation

Rituals provides automatic process management of a sphinx-autobuild daemon, which means you easily get a
live-reload preview in your browser. To start the build watchdog, use inv docs -w -b. The -b means to open
a new browser tab, after the server process is ready. To kill the server, call the inv docs -k command. You can
check on the status of a running daemon with inv docs -s.

Note that sometimes you have to manually trigger a full rebuild via inv docs --clean, especially when you
make structural changes (e.g. adding new chapters to the main toc-tree). Your browser will change the view to an
empty canvas, just initiate a reload (Ctrl-R) when the build is done. Typically this is needed when the sidebar TOC
is out of sync, which happens due to the optimizations in sphinx-autobuild that make it so responsive.

3.2.3.2 Publishing Documentation

To upload documentation to either PyPI or a WebDAV server (like Artifactory), you can use the docs.upload tasks
after using docs.sphinx. By default, the documentation hosting of PyPI is used.

To enable a local documentation server, set the following environment variables (e.g. in your ~/.bashrc):

export INVOKE_RITUALS_DOCS_UPLOAD_METHOD=webdav
export INVOKE_RITUALS_DOCS_UPLOAD_TARGETS_WEBDAV_URL='http://repo.example.com/
→˓artifactory/wwwdata-local/python/{name}/{version}/{name}-{version}.zip;kind=docs'

This example shows a configuration for an Artifactory server, and as you can see the name and version of the
project can be used to generate appropriate URLs. The version defaults to latest, unless you provide a specific
version number via the --release option. To use the upload in a browser, add !/index.html to the URL of the
ZIP file, and make sure the configuration of your Artifactory installation correctly handles image and other relevant
MIME types.

3.2. Tasks Reference 11

http://pythonhosted.org/

rituals Documentation, Release 0.3.1

Note that you can override the default upload method using the target option, i.e. adding --target pypi to
your task invocation will upload the docs to PyPI no matter what.

Note: The WebDAV upload is tested with Artifactory 4.x, if you encounter problems with other repository servers,
open a ticket so support for them can be added.

3.2.4 Release Workflow

3.2.4.1 Managing Development Versions

For intermediate test releases, you can automatically generate a dev version compliant to PEP-440. The release.
bump task generates this version, and rewrites the tag_build value in setup_cfg. For this to work, the config
file must already exists, and contain a line with an existing tag_build setting, like this:

[egg_info]
tag_build = .dev
tag_date = false

The created version strives to uniquely describe the code being packaged, so it can get quite lengthy. The “worst case
scenario” when it comes to length looks like this: 1.2.2.dev4+1.2.1.g07c5047.20170309t1247.ci.42.

Let’s dissect this:

• 1.2.2 is the next-release version as reported by setup.py.

• .dev4 means we are 4 commits beyond the last release version.

• 1.2.1 is that last release version, found via checking the annotated git tags.

• g07c5047 is the git commit hash of the HEAD ref.

• Having the 20170309t1247 timestamp means the working directory at the time of the task execution was
dirty (had uncommitted changes).

• ci.42 is appended when the environment contains a BUILD_ID variable (in this case, set to 42).

Use the --pypi option to prevent creation of the local part of the version info (anything after the +). This allows you
to push development versions to PyPI for open beta release testing. In those cases, you should commit setup.cfg
with the specific tag_build setting, and then git tag that commit.

Adding -v for verbosity shows a few more details of assembling the version information. Right now, only git is
really supported regarding SCM metadata. Anything else will give you Unsupported SCM warnings when using
this and some other tasks.

3.2.4.2 Preparing a Release

release.prep performs QA checks, and switches to non-dev versioning.

TODO

3.2.4.3 Building a PEX Distribution

TODO

12 Chapter 3. Documentation Contents

https://www.python.org/dev/peps/pep-0440/

rituals Documentation, Release 0.3.1

3.2.5 Continuous Integration

3.2.5.1 Jenkins

Note that tasks related to Jenkins are only available by default when the environment variable JENKINS_URL is
defined.

The jenkins.description task creates a text file (by default build/project.html) that can be used via
the Jenkins Description Setter plugin to dynamically fill the Jenkins job description from already available metadata.
The resulting description looks like the example on the right.

3.3 Configuration Reference

Please read Invoke’s Configuration Guide on the concepts and basic mechanisms of its hierarchy of configuration files,
environment variables, task namespaces and CLI flags. This reference guide lists the configuration options specific to
tasks provided by Rituals.

Note: In the following tables of configurations settings, the root namespace of ‘rituals’ is implied, so to access them
in a task you’d use ctx.rituals.‹name›, and INVOKE_RITUALS_‹NAME› to define an environment variable.

3.3.1 General Options

To make Python versions available that are not part of the host’s default installation, rituals.snakepits is used,
e.g. when performing multi-environment testing. The default is /opt/pyenv/bin:/opt/pyrun/bin.

Name Description
snakepits Lookup path for Python interpreters

3.3. Configuration Reference 13

https://wiki.jenkins-ci.org/display/JENKINS/Description+Setter+Plugin
https://invoke.readthedocs.org/en/latest/concepts/configuration.html

rituals Documentation, Release 0.3.1

3.3.2 Options for ‘test’

If one of the directories in rituals.snakepits exists, it’s added to the PATH of tox.

3.3.3 Options for ‘docs’

The defaults for the docs task should almost always fit, but if you need to change them, you can.

Name Description
docs.sources Documentation source folder (docs)
docs.build Build area within the source folder (_build)
docs.watchdog.host IP to bind sphinx-autobuild to (127.0.0.1)
docs.watchdog.port Port to bind sphinx-autobuild to (8840)

3.3.4 Options for ‘release’

When release.prep changes the project configuration for a release and then tags the resulting changeset, the
values from the following table are used for messages and names.

Name Description
release.commit.message Message used (:package: Release v{version})
release.tag.name Release tag (v{version})
release.tag.message Tag annotation (Release v{version})

The release.pex task has an --upload option to upload the created archive to a WebDAV repository, e.g. a
local Artifactory server or to Bintray. The best way to make this usable in each of your projects is to insert the base
URL of your Python repository into your shell environment:

export INVOKE_RITUALS_RELEASE_UPLOAD_BASE_URL=\
"http://repo.example.com/artifactory/pypi-releases-local/"

Name Description
release.upload.base_url WebDAV server end-point
release.upload.path WebDAV path ({name}/{version}/{filename})

The following settings are used when building self-contained releases that integrate eGenix PyRun.

Name Description
pyrun.version The version of PyRun to use (e.g. 2.1.0)
pyrun.python The version of Python to use (2.6, 2.7, or 3.4)
pyrun.ucs Unicode code points size (ucs2 or ucs4)
pyrun.platform The platform ID (e.g. linux-x86_64, macosx-10.5-x86_64)
pyrun.base_url Download location base URL pattern
pyrun.archive Download location file name pattern

The rituals.pyrun.base_url value can be a local http[s]URL of an Artifactory repository or some similar
webserver, or else a file:// URL of a file system cache. Note that you should keep the unchanged name of the
original download location, i.e. do not change rituals.pyrun.archive. The location patterns can contain the
pyrun settings as placeholders, e.g. {version}.

14 Chapter 3. Documentation Contents

http://www.jfrog.com/open-source/#os-arti
https://bintray.com/
https://www.egenix.com/products/python/PyRun/
http://www.jfrog.com/open-source/#os-arti

rituals Documentation, Release 0.3.1

This sets a local download cache:

export INVOKE_RITUALS_PYRUN_BASE_URL="file://$HOME/Downloads"

You have to download the PyRun releases you plan to use to that directory, using your browser or curl.

3.3.5 Options for ‘devpi’

When you call the devpi.refresh task without any option, the value of rituals.devpi.requirements
is the name of the file parsed for the list of packages to refresh in the active devpi server. It defaults to
dev-requirements.txt.

Name Description
devpi.requirements Name of requirements file to use for refreshing

3.4 Complete API Reference

The following is a complete API reference generated from source.

3.4.1 rituals package

Common tasks for ‘Invoke’ that are needed again and again.

The rituals package provides PyInvoke tasks that work for any project, based on its project metadata, to automate
common developer chores like ‘clean’, ‘build’, ‘dist’, ‘test’, ‘check’, and ‘release-prep’ (for the moment).

The guiding principle for these tasks is to strictly separate low-level tasks for building and installing (via setup.py)
from high-level convenience tasks a developer uses (via tasks.py). Invoke tasks can use Setuptools ones as building
blocks, but never the other way ‘round – this avoids bootstrapping head- aches during package installations using pip.

The easiest way to get a working project based on rituals is the py-generic-project cookiecutter template.
That way you have a working project skeleton within minutes that is fully equipped, with all aspects of bootstrapping,
building, testing, quality checks, continuous integration, documentation, and releasing covered. See here for more:

https://github.com/Springerle/py-generic-project

Copyright 2015 - 2019 Jürgen Hermann

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License version 2 as published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free
Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

The full LICENSE file and source are available at

https://github.com/jhermann/rituals

3.4. Complete API Reference 15

https://github.com/Springerle/py-generic-project
https://github.com/jhermann/rituals

rituals Documentation, Release 0.3.1

3.4.1.1 Subpackages

rituals.acts package

rituals.acts – Task building blocks.

Submodules

rituals.acts.basic module

Basic tasks.

rituals.acts.devpi module

‘devpi’ tasks.

rituals.acts.devpi.get_devpi_url(ctx)
Get currently used ‘devpi’ base URL.

rituals.acts.documentation module

‘docs’ tasks.

class rituals.acts.documentation.DocsUploader(ctx, cfg, target)
Bases: object

Helper to perform an upload of pre-built docs.

upload(docs_base, release)
Upload docs in docs_base to the target of this uploader.

rituals.acts.documentation.get_pypi_auth(configfile=u’~/.pypirc’)
Read auth from pip config.

rituals.acts.documentation.watchdogctl(ctx, kill=False, verbose=True)
Control / check a running Sphinx autobuild process.

rituals.acts.github module

GitHub automation.

rituals.acts.inspection module

‘docs’ tasks.

rituals.acts.jenkins module

Tasks specific to Jenkins.

16 Chapter 3. Documentation Contents

rituals Documentation, Release 0.3.1

rituals.acts.pkgdeb module

‘deb’ tasks.

rituals.acts.releasing module

Release tasks.

rituals.acts.releasing.get_egg_info(cfg, verbose=False)
Call ‘setup egg_info’ and return the parsed meta-data.

rituals.acts.testing module

Testing tasks.

rituals.util package

rituals.util – Helper modules.

rituals.util.add_dir2pypath(path)
Add given directory to PYTHONPATH, e.g. for pylint.

rituals.util.search_file_upwards(name, base=None)
Search for a file named name from cwd or given directory to root. Return None if nothing’s found.

Subpackages

rituals.util.scm package

rituals.util.scm – Source Code Management support.

rituals.util.scm.auto_detect(workdir)
Return string signifying the SCM used in the given directory.

Currently, ‘git’ is supported. Anything else returns ‘unknown’.

rituals.util.scm.provider(workdir, commit=True, **kwargs)
Factory for the correct SCM provider in workdir.

Submodules

rituals.util.scm.base module

Provider base class.

class rituals.util.scm.base.ProviderBase(workdir, commit=True, **kwargs)
Bases: object

Base class for SCM providers.

run(cmd, *args, **kwargs)
Run a command.

3.4. Complete API Reference 17

rituals Documentation, Release 0.3.1

run_elective(cmd, *args, **kwargs)
Run a command, or just echo it, depending on commit.

rituals.util.scm.git module

git SCM provider.

class rituals.util.scm.git.GitProvider(workdir, commit=True, **kwargs)
Bases: rituals.util.scm.base.ProviderBase

git SCM provider.

Expects a working git executable in the path, having a reasonably current version.

add_file(filename)
Stage a file for committing.

commit(message)
Commit pending changes.

key = u'git'

pep440_dev_version(verbose=False, non_local=False)
Return a PEP-440 dev version appendix to the main version number.

Result is None if the workdir is in a release-ready state (i.e. clean and properly tagged).

tag(label, message=None)
Tag the current workdir state.

workdir_is_clean(quiet=False)
Check for uncommitted changes, return True if everything is clean.

Inspired by http://stackoverflow.com/questions/3878624/.

rituals.util.scm.null module

Provider for unknown SCM systems.

class rituals.util.scm.null.NullProvider(workdir, commit=True, **kwargs)
Bases: rituals.util.scm.base.ProviderBase

Stub provider for unknown SCM systems.

This implements the provider interface, mostly emitting warnings.

add_file(filename)
Stage a file for committing, or commit it directly (depending on the SCM).

commit(message)
Commit pending changes.

key = u'unknown'

pep440_dev_version(verbose=False, non_local=False)
Return a PEP-440 dev version appendix to the main version number.

tag(label, message=None)
Tag the current workdir state.

workdir_is_clean(quiet=False)
Check for uncommitted changes, return True if everything is clean.

18 Chapter 3. Documentation Contents

http://stackoverflow.com/questions/3878624/

rituals Documentation, Release 0.3.1

Submodules

rituals.util.antglob module

Recursive globbing with ant-style syntax.

class rituals.util.antglob.FileSet(root, patterns)
Bases: object

Ant-style file and directory matching.

Produces an iterator of all of the files that match the provided patterns. Note that directory matches must end
with a slash, and if they’re exclusions, they won’t be scanned (which prunes anything in that directory that would
otherwise match).

Directory specifiers: ** matches zero or more directories. / path separator.

File specifiers:

• glob style wildcard.

[chars] inclusive character sets. [^chars] exclusive character sets.

Examples

/*.py recursively match all python files. foo//.py recursively match all python files in the ‘foo’ directory. *.py
match all the python files in the current directory. */.txt match all the text files in top-level directories. foo/**/*
all files under directory ‘foo’. / top-level directories. foo/ the directory ‘foo’ itself. */foo/ any directory named
‘foo’. **/.* hidden files. **/.*/ hidden directories.

included(path, is_dir=False)
Check patterns in order, last match that includes or excludes path wins. Return None on undecided.

walk(**kwargs)
Like os.walk and taking the same keyword arguments, but generating paths relative to the root.

Starts in the fileset’s root and filters based on its patterns. If with_root=True is passed in, the generated
paths include the root path.

rituals.util.antglob.includes(pattern)
A single inclusive glob pattern.

rituals.util.antglob.excludes(pattern)
A single exclusive glob pattern.

rituals.util.filesys module

File system helpers.

rituals.util.filesys.pretty_path(path, _home_re=<_sre.SRE_Pattern object>)
Prettify path for humans, and make it Unicode.

rituals.util.filesys.pushd(*args, **kwds)
A context that enters a given directory and restores the old state on exit.

The original directory is returned as the context variable.

3.4. Complete API Reference 19

rituals Documentation, Release 0.3.1

rituals.util.filesys.url_as_file(*args, **kwds)
Context manager that GETs a given url and provides it as a local file.

The file is in a closed state upon entering the context, and removed when leaving it, if still there.

To give the file name a specific extension, use ext; the extension can optionally include a separating dot, other-
wise it will be added.

Parameters

• url (str) – URL to retrieve.

• ext (str, optional) – Extension for the generated filename.

Yields str – The path to a temporary file with the content of the URL.

Raises requests.RequestException – Base exception of requests, see its docs for more
detailed ones.

Example

>>> import io, re, json
>>> with url_as_file('https://api.github.com/meta', ext='json') as meta:
... meta, json.load(io.open(meta, encoding='ascii'))['hooks']
(u'/tmp/www-api.github.com-Ba5OhD.json', [u'192.30.252.0/22'])

rituals.util.notify module

Log notification messages to console.

rituals.util.notify.banner(msg)
Emit a banner just like Invoke’s run(. . . , echo=True).

rituals.util.notify.error(msg)
Emit an error message to stderr.

rituals.util.notify.failure(msg)
Emit a fatal message and exit.

rituals.util.notify.info(msg)
Emit a normal message.

rituals.util.notify.warning(msg)
Emit a warning message.

rituals.util.shell module

Shell command calls.

rituals.util.shell.capture(cmd, **kw)
Run a command and return its stripped captured output.

rituals.util.shell.run(cmd, **kw)
Run a command and flush its output.

20 Chapter 3. Documentation Contents

rituals Documentation, Release 0.3.1

rituals.util.which module

Find the full path to commands.

which(command, path=None, verbose=0, exts=None) Return the full path to the first match of the given command
on the path.

whichall(command, path=None, verbose=0, exts=None) Return a list of full paths to all matches of the given com-
mand on the path.

whichgen(command, path=None, verbose=0, exts=None) Return a generator which will yield full paths to all
matches of the given command on the path.

By default the PATH environment variable is searched (as well as, on Windows, the AppPaths key in the registry), but
a specific ‘path’ list to search may be specified as well. On Windows, the PATHEXT environment variable is applied
as appropriate.

If “verbose” is true then a tuple of the form (<fullpath>, <matched-where-description>)

is returned for each match. The latter element is a textual description of where the match was found. For example:

from PATH element 0 from HKLMSOFTWARE. . . perl.exe

exception rituals.util.which.WhichError
Bases: exceptions.Exception

Executable not found by which module.

rituals.util.which.which(command, path=None, verbose=0, exts=None)
Return the full path to the first match of the given command on the path.

“command” is a the name of the executable to search for. “path” is an optional alternate path list to search. The
default it

to use the PATH environment variable.

“verbose”, if true, will cause a 2-tuple to be returned. The second element is a textual description of where
the match was found.

“exts” optionally allows one to specify a list of extensions to use instead of the standard list for this system.
This can effectively be used as an optimization to, for example, avoid stat’s of “foo.vbs” when searching
for “foo” and you know it is not a VisualBasic script but “.vbs” is on PATHEXT. This option is only
supported on Windows.

If no match is found for the command, a WhichError is raised.

rituals.util.which.whichall(command, path=None, verbose=0, exts=None)
Return a list of full paths to all matches of the given command on the path.

“command” is a the name of the executable to search for. “path” is an optional alternate path list to search. The
default it

to use the PATH environment variable.

“verbose”, if true, will cause a 2-tuple to be returned for each match. The second element is a textual de-
scription of where the match was found.

“exts” optionally allows one to specify a list of extensions to use instead of the standard list for this system.
This can effectively be used as an optimization to, for example, avoid stat’s of “foo.vbs” when searching
for “foo” and you know it is not a VisualBasic script but “.vbs” is on PATHEXT. This option is only
supported on Windows.

3.4. Complete API Reference 21

rituals Documentation, Release 0.3.1

rituals.util.which.whichgen(command, path=None, verbose=0, exts=None)
Return a generator of full paths to the given command.

“command” is a the name of the executable to search for. “path” is an optional alternate path list to search. The
default it

to use the PATH environment variable.

“verbose”, if true, will cause a 2-tuple to be returned for each match. The second element is a textual de-
scription of where the match was found.

“exts” optionally allows one to specify a list of extensions to use instead of the standard list for this system.
This can effectively be used as an optimization to, for example, avoid stat’s of “foo.vbs” when searching
for “foo” and you know it is not a VisualBasic script but “.vbs” is on PATHEXT. This option is only
supported on Windows.

This method returns a generator which yields either full paths to the given command or, if verbose, tuples of the
form (<path to command>, <where path found>).

3.4.1.2 Submodules

3.4.1.3 rituals.config module

Project configuration and layout.

rituals.config.get_project_root()
Determine location of tasks.py.

rituals.config.load()
Load and return configuration as a Bunch.

Values are based on DEFAULTS, and metadata from setup.py.

rituals.config.set_flat_layout()
Switch default project layout to everything top-level.

rituals.config.set_maven_layout()
Switch default project layout to Maven-like.

3.4.1.4 rituals.easy module

Default namespace for convenient wildcard import in task definition modules.

class rituals.easy.Collection(*args, **kwargs)
Bases: object

A collection of executable tasks. See /concepts/namespaces.

New in version 1.0.

add_collection(coll, name=None)
Add .Collection coll as a sub-collection of this one.

Parameters

• coll – The .Collection to add.

• name (str) – The name to attach the collection as. Defaults to the collection’s own
internal name.

22 Chapter 3. Documentation Contents

rituals Documentation, Release 0.3.1

New in version 1.0.

add_task(task, name=None, aliases=None, default=None)
Add .Task task to this collection.

Parameters

• task – The .Task object to add to this collection.

• name – Optional string name to bind to (overrides the task’s own self-defined name at-
tribute and/or any Python identifier (i.e. .func_name.)

• aliases – Optional iterable of additional names to bind the task as, on top of the primary
name. These will be used in addition to any aliases the task itself declares internally.

• default – Whether this task should be the collection default.

New in version 1.0.

configuration(taskpath=None)
Obtain merged configuration values from collection & children.

Parameters taskpath – (Optional) Task name/path, identical to that used for ~.Collec-
tion.__getitem__ (e.g. may be dotted for nested tasks, etc.) Used to decide which path to
follow in the collection tree when merging config values.

Returns A dict containing configuration values.

New in version 1.0.

configure(options)
(Recursively) merge options into the current .configuration.

Options configured this way will be available to all tasks. It is recommended to use unique keys to avoid
potential clashes with other config options

For example, if you were configuring a Sphinx docs build target directory, it’s better to use a key like
'sphinx.target' than simply 'target'.

Parameters options – An object implementing the dictionary protocol.

Returns None.

New in version 1.0.

classmethod from_module(module, name=None, config=None, loaded_from=None,
auto_dash_names=None)

Return a new .Collection created from module.

Inspects module for any .Task instances and adds them to a new .Collection, returning it. If any explicit
namespace collections exist (named ns or namespace) a copy of that collection object is preferentially
loaded instead.

When the implicit/default collection is generated, it will be named after the module’s __name__ attribute,
or its last dotted section if it’s a submodule. (I.e. it should usually map to the actual .py filename.)

Explicitly given collections will only be given that module-derived name if they don’t already have a valid
.name attribute.

If the module has a docstring (__doc__) it is copied onto the resulting .Collection (and used for display
in help, list etc output.)

Parameters

• name (str) – A string, which if given will override any automatically derived collection
name (or name set on the module’s root namespace, if it has one.)

3.4. Complete API Reference 23

rituals Documentation, Release 0.3.1

• config (dict) – Used to set config options on the newly created .Collection before
returning it (saving you a call to .configure.)

If the imported module had a root namespace object, config is merged on top of it (i.e.
overriding any conflicts.)

• loaded_from (str) – Identical to the same-named kwarg from the regular class con-
structor - should be the path where the module was found.

• auto_dash_names (bool) – Identical to the same-named kwarg from the regular class
constructor - determines whether emitted names are auto-dashed.

New in version 1.0.

serialized()
Return an appropriate-for-serialization version of this object.

See the documentation for .Program and its json task listing format; this method is the driver for that
functionality.

New in version 1.0.

subcollection_from_path(path)
Given a path to a subcollection, return that subcollection.

New in version 1.0.

subtask_name(collection_name, task_name)

task_names
Return all task identifiers for this collection as a one-level dict.

Specifically, a dict with the primary/”real” task names as the key, and any aliases as a list value.

It basically collapses the namespace tree into a single easily-scannable collection of invocation strings, and
is thus suitable for things like flat-style task listings or transformation into parser contexts.

New in version 1.0.

task_with_config(name)
Return task named name plus its configuration dict.

E.g. in a deeply nested tree, this method returns the .Task, and a configuration dict created by merging
that of this .Collection and any nested Collections <.Collection>, up through the one actually holding the
.Task.

See ~.Collection.__getitem__ for semantics of the name argument.

Returns Two-tuple of (.Task, dict).

New in version 1.0.

to_contexts()
Returns all contained tasks and subtasks as a list of parser contexts.

New in version 1.0.

transform(name)
Transform name with the configured auto-dashes behavior.

If the collection’s auto_dash_names attribute is True (default), all non leading/trailing underscores
are turned into dashes. (Leading/trailing underscores tend to get stripped elsewhere in the stack.)

If it is False, the inverse is applied - all dashes are turned into underscores.

New in version 1.0.

24 Chapter 3. Documentation Contents

rituals Documentation, Release 0.3.1

rituals.easy.task(*args, **kwargs)
Marks wrapped callable object as a valid Invoke task.

May be called without any parentheses if no extra options need to be specified. Otherwise, the following
keyword arguments are allowed in the parenthese’d form:

• name: Default name to use when binding to a .Collection. Useful for avoiding Python namespace issues
(i.e. when the desired CLI level name can’t or shouldn’t be used as the Python level name.)

• aliases: Specify one or more aliases for this task, allowing it to be invoked as multiple different
names. For example, a task named mytask with a simple @task wrapper may only be invoked as
"mytask". Changing the decorator to be @task(aliases=['myothertask']) allows invocation
as "mytask" or "myothertask".

• positional: Iterable overriding the parser’s automatic “args with no default value are considered po-
sitional” behavior. If a list of arg names, no args besides those named in this iterable will be considered
positional. (This means that an empty list will force all arguments to be given as explicit flags.)

• optional: Iterable of argument names, declaring those args to have optional values. Such argu-
ments may be given as value-taking options (e.g. --my-arg=myvalue, wherein the task is given
"myvalue") or as Boolean flags (--my-arg, resulting in True).

• iterable: Iterable of argument names, declaring them to build iterable values.

• incrementable: Iterable of argument names, declaring them to increment their values.

• default: Boolean option specifying whether this task should be its collection’s default task (i.e. called
if the collection’s own name is given.)

• auto_shortflags: Whether or not to automatically create short flags from task options; defaults to
True.

• help: Dict mapping argument names to their help strings. Will be displayed in --help output.

• pre, post: Lists of task objects to execute prior to, or after, the wrapped task whenever it is executed.

• autoprint: Boolean determining whether to automatically print this task’s return value to standard
output when invoked directly via the CLI. Defaults to False.

• klass: Class to instantiate/return. Defaults to .Task.

If any non-keyword arguments are given, they are taken as the value of the pre kwarg for convenience’s sake.
(It is an error to give both *args and pre at the same time.)

New in version 1.0.

Changed in version 1.1: Added the klass keyword argument.

rituals.easy.pushd(*args, **kwds)
A context that enters a given directory and restores the old state on exit.

The original directory is returned as the context variable.

rituals.easy.fail(message, exitcode=1)
Exit with error code and message.

3.4. Complete API Reference 25

rituals Documentation, Release 0.3.1

3.5 Contribution Guidelines

3.5.1 Overview

Contributing to this project is easy, and reporting an issue or adding to the documentation also improves things for
every user. You don’t need to be a developer to contribute.

3.5.1.1 Reporting issues

Please use the GitHub issue tracker, and describe your problem so that it can be easily reproduced. Providing relevant
version information on the project itself and your environment helps with that.

3.5.1.2 Improving documentation

The easiest way to provide examples or related documentation that helps other users is the GitHub wiki.

If you are comfortable with the Sphinx documentation tool, you can also prepare a pull request with changes to the
core documentation. GitHub’s built-in text editor makes this especially easy, when you choose the “Create a new
branch for this commit and start a pull request” option on saving. Small fixes for typos and the like are a matter of
minutes when using that tool.

3.5.1.3 Code contributions

Here’s a quick guide to improve the code:

1. Fork the repo, and clone the fork to your machine.

2. Add your improvements, the technical details are further below.

3. Run the tests and make sure they’re passing (invoke test).

4. Check for violations of code conventions (invoke check).

5. Make sure the documentation builds without errors (invoke build --docs).

6. Push to your fork and submit a pull request.

Please be patient while waiting for a review. Life & work tend to interfere.

3.5.2 Details on contributing code

This project is written in Python, and the documentation is generated using Sphinx. setuptools and Invoke are used to
build and manage the project. Tests are written and executed using pytest and tox.

3.5.2.1 Set up a working development environment

To set up a working directory from your own fork, follow these steps, but replace the repository https URLs with
SSH ones that point to your fork.

For that to work on Debian type systems, you need the git, python, and python-virtualenv packages in-
stalled. Other distributions are similar.

26 Chapter 3. Documentation Contents

https://help.github.com/articles/using-pull-requests/
http://www.python.org/
https://pypi.python.org/pypi/Sphinx
https://packaging.python.org/en/latest/projects.html#setuptools
http://www.pyinvoke.org/
http://pytest.org/
https://testrun.org/tox/
https://github.com/jhermann/rituals/blob/master/README.md#contributing

rituals Documentation, Release 0.3.1

3.5.2.2 Add your changes to a feature branch

For any cohesive set of changes, create a new branch based on the current upstream master, with a name reflecting
the essence of your improvement.

git branch "name-for-my-fixes" origin/master
git checkout "name-for-my-fixes"
... make changes...
invoke ci # check output for broken tests, or PEP8 violations and the like
... commit changes...
git push origin "name-for-my-fixes"

Please don’t create large lumps of unrelated changes in a single pull request. Also take extra care to avoid spurious
changes, like mass whitespace diffs. All Python sources use spaces to indent, not TABs.

3.5.2.3 Make sure your changes work

Some things that will increase the chance that your pull request is accepted:

• Follow style conventions you see used in the source already (and read PEP8).

• Include tests that fail without your code, and pass with it. Only minor refactoring and documentation changes
require no new tests. If you are adding functionality or fixing a bug, please also add a test for it!

• Update any documentation or examples impacted by your change.

• Styling conventions and code quality are checked with invoke check, tests are run using invoke test,
and the docs can be built locally using invoke build --docs.

Following these hints also expedites the whole procedure, since it avoids unnecessary feedback cycles.

3.6 Software License

Copyright 2015 - 2019 Jürgen Hermann

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License version 2 as published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free
Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

The full LICENSE file and source are available at

https://github.com/jhermann/rituals

3.6.1 Full License Text

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc., <http://fsf.org/>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

(continues on next page)

3.6. Software License 27

http://www.python.org/dev/peps/pep-0008/
https://github.com/jhermann/rituals

rituals Documentation, Release 0.3.1

(continued from previous page)

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
(continues on next page)

28 Chapter 3. Documentation Contents

rituals Documentation, Release 0.3.1

(continued from previous page)

a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based

(continues on next page)

3.6. Software License 29

rituals Documentation, Release 0.3.1

(continued from previous page)

on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under

(continues on next page)

30 Chapter 3. Documentation Contents

rituals Documentation, Release 0.3.1

(continued from previous page)

this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among

(continues on next page)

3.6. Software License 31

rituals Documentation, Release 0.3.1

(continued from previous page)

countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least

(continues on next page)

32 Chapter 3. Documentation Contents

rituals Documentation, Release 0.3.1

(continued from previous page)

the "copyright" line and a pointer to where the full notice is found.

{description}
Copyright (C) {year} {fullname}

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.

{signature of Ty Coon}, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License.

3.6. Software License 33

rituals Documentation, Release 0.3.1

34 Chapter 3. Documentation Contents

CHAPTER 4

References

4.1 Tools

• Cookiecutter

• PyInvoke

• pytest

• tox

• Pylint

• twine

• bpython

• yolk3k

35

http://cookiecutter.readthedocs.org/en/latest/
http://www.pyinvoke.org/
http://pytest.org/latest/contents.html
https://tox.readthedocs.org/en/latest/
http://docs.pylint.org/
https://github.com/pypa/twine#twine
http://docs.bpython-interpreter.org/
https://github.com/myint/yolk#yolk

rituals Documentation, Release 0.3.1

36 Chapter 4. References

CHAPTER 5

Indices and Tables

• genindex

• modindex

• search

37

rituals Documentation, Release 0.3.1

38 Chapter 5. Indices and Tables

Python Module Index

r
rituals, 15
rituals.acts, 16
rituals.acts.basic, 16
rituals.acts.devpi, 16
rituals.acts.documentation, 16
rituals.acts.github, 16
rituals.acts.inspection, 16
rituals.acts.jenkins, 16
rituals.acts.pkgdeb, 17
rituals.acts.releasing, 17
rituals.acts.testing, 17
rituals.config, 22
rituals.easy, 22
rituals.util, 17
rituals.util.antglob, 19
rituals.util.filesys, 19
rituals.util.notify, 20
rituals.util.scm, 17
rituals.util.scm.base, 17
rituals.util.scm.git, 18
rituals.util.scm.null, 18
rituals.util.shell, 20
rituals.util.which, 21

39

rituals Documentation, Release 0.3.1

40 Python Module Index

Index

A
add_collection() (rituals.easy.Collection method), 22
add_dir2pypath() (in module rituals.util), 17
add_file() (rituals.util.scm.git.GitProvider method), 18
add_file() (rituals.util.scm.null.NullProvider method), 18
add_task() (rituals.easy.Collection method), 23
auto_detect() (in module rituals.util.scm), 17

B
banner() (in module rituals.util.notify), 20

C
capture() (in module rituals.util.shell), 20
Collection (class in rituals.easy), 22
commit() (rituals.util.scm.git.GitProvider method), 18
commit() (rituals.util.scm.null.NullProvider method), 18
configuration() (rituals.easy.Collection method), 23
configure() (rituals.easy.Collection method), 23

D
DocsUploader (class in rituals.acts.documentation), 16

E
error() (in module rituals.util.notify), 20
excludes() (in module rituals.util.antglob), 19

F
fail() (in module rituals.easy), 25
failure() (in module rituals.util.notify), 20
FileSet (class in rituals.util.antglob), 19
from_module() (rituals.easy.Collection class method), 23

G
get_devpi_url() (in module rituals.acts.devpi), 16
get_egg_info() (in module rituals.acts.releasing), 17
get_project_root() (in module rituals.config), 22
get_pypi_auth() (in module rituals.acts.documentation),

16
GitProvider (class in rituals.util.scm.git), 18

I
included() (rituals.util.antglob.FileSet method), 19
includes() (in module rituals.util.antglob), 19
info() (in module rituals.util.notify), 20

K
key (rituals.util.scm.git.GitProvider attribute), 18
key (rituals.util.scm.null.NullProvider attribute), 18

L
load() (in module rituals.config), 22

N
NullProvider (class in rituals.util.scm.null), 18

P
pep440_dev_version() (rituals.util.scm.git.GitProvider

method), 18
pep440_dev_version() (rituals.util.scm.null.NullProvider

method), 18
pretty_path() (in module rituals.util.filesys), 19
provider() (in module rituals.util.scm), 17
ProviderBase (class in rituals.util.scm.base), 17
pushd() (in module rituals.easy), 25
pushd() (in module rituals.util.filesys), 19

R
rituals (module), 15
rituals.acts (module), 16
rituals.acts.basic (module), 16
rituals.acts.devpi (module), 16
rituals.acts.documentation (module), 16
rituals.acts.github (module), 16
rituals.acts.inspection (module), 16
rituals.acts.jenkins (module), 16
rituals.acts.pkgdeb (module), 17
rituals.acts.releasing (module), 17
rituals.acts.testing (module), 17
rituals.config (module), 22

41

rituals Documentation, Release 0.3.1

rituals.easy (module), 22
rituals.util (module), 17
rituals.util.antglob (module), 19
rituals.util.filesys (module), 19
rituals.util.notify (module), 20
rituals.util.scm (module), 17
rituals.util.scm.base (module), 17
rituals.util.scm.git (module), 18
rituals.util.scm.null (module), 18
rituals.util.shell (module), 20
rituals.util.which (module), 21
run() (in module rituals.util.shell), 20
run() (rituals.util.scm.base.ProviderBase method), 17
run_elective() (rituals.util.scm.base.ProviderBase

method), 17

S
search_file_upwards() (in module rituals.util), 17
serialized() (rituals.easy.Collection method), 24
set_flat_layout() (in module rituals.config), 22
set_maven_layout() (in module rituals.config), 22
subcollection_from_path() (rituals.easy.Collection

method), 24
subtask_name() (rituals.easy.Collection method), 24

T
tag() (rituals.util.scm.git.GitProvider method), 18
tag() (rituals.util.scm.null.NullProvider method), 18
task() (in module rituals.easy), 24
task_names (rituals.easy.Collection attribute), 24
task_with_config() (rituals.easy.Collection method), 24
to_contexts() (rituals.easy.Collection method), 24
transform() (rituals.easy.Collection method), 24

U
upload() (rituals.acts.documentation.DocsUploader

method), 16
url_as_file() (in module rituals.util.filesys), 19

W
walk() (rituals.util.antglob.FileSet method), 19
warning() (in module rituals.util.notify), 20
watchdogctl() (in module rituals.acts.documentation), 16
which() (in module rituals.util.which), 21
whichall() (in module rituals.util.which), 21
WhichError, 21
whichgen() (in module rituals.util.which), 21
workdir_is_clean() (rituals.util.scm.git.GitProvider

method), 18
workdir_is_clean() (rituals.util.scm.null.NullProvider

method), 18

42 Index

	Overview
	Important Links
	Documentation Contents
	User’s Manual
	Introduction
	Adding Rituals to Your Project
	Task Namespaces
	The Root Namespace
	Adding Local Task Definitions
	Constructing Your Own Namespace

	How-Tos
	Change default project layout
	Change default project configuration

	Tasks Reference
	Fundamental Tasks
	Getting Help
	Project Cleanup
	Building the Project
	Freezing Requirements

	Executing Tests
	Documentation Tasks
	Building Sphinx Documentation
	Publishing Documentation

	Release Workflow
	Managing Development Versions
	Preparing a Release
	Building a PEX Distribution

	Continuous Integration
	Jenkins

	Configuration Reference
	General Options
	Options for ‘test’
	Options for ‘docs’
	Options for ‘release’
	Options for ‘devpi’

	Complete API Reference
	rituals package
	Subpackages
	Submodules
	rituals.config module
	rituals.easy module

	Contribution Guidelines
	Overview
	Reporting issues
	Improving documentation
	Code contributions

	Details on contributing code
	Set up a working development environment
	Add your changes to a feature branch
	Make sure your changes work

	Software License
	Full License Text

	References
	Tools

	Indices and Tables
	Python Module Index

